Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jinorgbio

CrossMark

Pulse radiolysis studies of the reactions of nitrogen dioxide with the vitamin B₁₂ complexes cob(II)alamin and nitrocobalamin

Rohan S. Dassanayake^a, Diane E. Cabelli^b, Nicola E. Brasch^{c,*}

^a Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA

^b Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA

^c School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand

ARTICLE INFO

ABSTRACT

Article history: Received 11 July 2014 Received in revised form 19 September 2014 Accepted 21 September 2014 Available online 6 October 2014

Keywords: Vitamin B₁₂ Cobalamins Nitrogen dioxide Pulse radiolysis Nitrosative stress Although now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there are few studies on the reactivity of 'NO₂, including the reactions between 'NO₂ and transition metal complexes. We report kinetic studies on the reactions of 'NO₂ with two forms of vitamin B₁₂ – cob(II)alamin and nitrocobalamin. UV–visible spectroscopy and HPLC analysis of the product solution show that 'NO₂ cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of $(3.5 \pm 0.3) \times 10^8$ M⁻¹ s⁻¹ (pH 7.0 and 9.0, room temperature, *I* = 0.20 M). The stoichiometry of the reaction is 1:1. No reaction is detected by UV–visible spectroscopy and HPLC analysis of the product solution when nitrocobalamin is exposed to up to 2.0 mol equiv. 'NO₂.

© 2014 Published by Elsevier Inc.

1. Introduction

The nitrogen dioxide radical ($^{1}NO_{2}$) is an important reactive nitrogen species (RNS) in biological systems. One of the main sources of $^{1}NO_{2}$ in vivo is from peroxynitrite/peroxynitrous acid (ONOO(H), pK_a 6.8 [1]); a powerful oxidant formed by the diffusion controlled reaction between nitric oxide (^{1}NO) and superoxide (O_{2}^{-}) radicals under oxidative stress conditions. Peroxynitrous acid undergoes bond homolysis to generate ^{1}OH and $^{1}NO_{2}$ with $^{2}30\%$ yields [2,3]. In biological systems peroxynitrite also reacts with CO₂ to form nitrosoperoxocarboxylate (ONOOCO₂⁻), which undergoes homolytic peroxo bond cleavage to produce $^{1}NO_{2}$ and the carbonate radical anion (CO₃⁻) in $^{2}35\%$ yields [4]. Other pathways that potentially lead to $^{1}NO_{2}$ generation in vivo include enzymatic oxidation of nitrite by peroxidases [4–7] and auto-oxidation of nitric oxide which produces nitrite as the final product [4].

 $^{\circ}NO_2$ is a strong one-electron oxidant (E ($^{\circ}NO_2$, NO_2^-) = 1.03 V vs. NHE (normal hydrogen electrode) [8] and has a rich chemistry, including reacting rapidly with other radical species and 1e⁻ oxidation of reductants, and slower addition to double bonds and H atom abstraction

[4,9–11]. 'NO₂ reacts with lipids, DNA, and proteins [4,6,12,13] and plays a key role in cellular nitrosative stress [4]. Nitrosative stress has been implicated in various diseases associated with chronic inflammation including Alzheimer's disease (AD), multiple sclerosis (MS), atherosclerosis and amyotrophic lateral sclerosis (ALS) [14]. Therefore, identifying molecules that can scavenge 'NO₂ is of interest [9,15,16], although still relatively unexplored compared with other ROS (reactive oxygen species)/RNS. Fluorescent probes for detecting 'NO₂ in cells are also of interest [17].

Vitamin B₁₂ derivatives (also commonly known as cobalamins, Cbls, Fig. 1) are important cofactors for mammalian adenosylcobalamin (5'-deoxy-5'-adenosyl (AdoCbl)) – dependent methylmalonyl-CoA mutase and methylcobalamin (MeCbl) – dependent methionine synthase [18,19]. Cbl is required in every cell in mammals and Cbl deficiency is associated with pernicious anemia and neurological diseases [20, 21]. Upon uptake into cells, all cob(III)alamins (Co³⁺) are reduced to the pentacoordinate cob(II)alamin (Cbl(II), Cbl(II), Co²⁺) [22]. Given that Cbl(II) is a radical complex, Cbl(II) would be expected to react rapidly with radicals including 'NO₂, and indeed, cell studies have shown that B₁₂ protects against O₂⁻⁻, H₂O₂ and homocysteine – induced oxidative stress [23–25]. Furthermore Cbl supplementation has been used to treat a wide range of chronic inflammatory diseases [26,27].

In this study we report kinetic and mechanistic studies on the reaction of 'NO₂ with cob(II)alamin and nitrocobalamin ($X = NO_2$, Fig. 1), using pulse radiolysis of solutions containing nitrite to generate 'NO₂.

^{*} Corresponding author. *E-mail address:* nbrasch@aut.ac.nz (N.E. Brasch).

Fig. 1. Structure of cob(III)alamins $X = CH_3$, Ado, H_2O/OH , CN^- , NO_2^- , etc. The ligand "X" is lost upon reduction of cob(III)alamins to give pentacoordinate cob(II)alamin.

2. Experimental section

2.1. Chemicals

Hydroxocobalamin hydrochloride, HOCbl·HCl (·nH₂O) (≥96%, 10– 15% water, batch dependent [28]) was purchased from Fluka and sodium borohydride (≥98%) and acetic acid were obtained from Acros Organics. Potassium dihydrogen phosphate, sodium hydroxide, ammonia, acetonitrile (HPLC grade), water (HPLC grade) and potassium cyanide (≥99%) were purchased from Fisher Scientific. Potassium bicarbonate (≥99%), sodium hydrogen phosphate (≥99%), potassium hydroxide, potassium nitrite (≥99%) and sodium hydroxide were obtained from J.T. Baker Chemical Company. Water was purified using a Barnstead Nanopure Diamond or Millipore water purification system.

2.2. Synthesis of cob(II)alamin (Cbl(II))

Cbl(II) was prepared by reducing HOCbl·HCl with NaBH₄ (1.2 mol equiv.) under anaerobic conditions using a procedure reported in the literature [25]. In a typical synthesis, HOCbl·HCl (~25 mg, 1.6×10^{-5} mol (10–15% H₂O)) was dissolved in anaerobic water (0.75 ml) in a vial. An aqueous, anaerobic stock solution of NaBH₄ (~10 mg in 1.00 ml) was prepared and NaBH₄ (1.2 mol equiv.) was added to the HOCbl·HCl solution. The vial was shaken vigorously for ~1 min and the reaction was allowed to proceed for 15–30 min. After the reaction was complete, excess NaBH₄ was quenched by the addition of acetone (0.200 ml). Cbl(II) was characterized by UV-visible (UV-vis) spectroscopy (λ_{max} 312, 405, 475 nm) [29], and solutions were stored under anaerobic conditions at -24 °C.

2.3. Determination of Cbl concentrations

Cbl concentrations were determined by converting Cbls to dicyanocobalamin, (CN)₂Cbl⁻. Cobalamins were allowed to react with KCN (0.10 M, pH 11.50) to produce (CN)₂Cbl⁻ (ϵ_{368} nm = 30,000 M⁻¹ cm⁻¹ [30]).

2.4. pH measurements

pH measurements were carried out at room temperature using an Orion model 520A or 710A pH meter equipped with Mettler-Toledo Inlab 423 or 421 pH electrodes. The electrode was filled with a 3 M KCl/saturated AgCl solution (pH 7.0) and standardized with standard buffer solutions at pH 4.00, 7.00 and 10.00. Solution pH was adjusted using H_3PO_4 , NaOH, or KOH solutions as necessary.

2.5. Pulse radiolysis experiments

Pulse radiolysis experiments were carried out at Brookhaven National Laboratory with a 2 MeV Van de Graaff accelerator producing electron pulses (pulse width 30–300 ns) that resulted in 1–30 Gy ((1–30) × 10⁻⁶ M primary radicals) generated in aqueous solution. The optical path of the cell was 2 cm. 'NO₂ was generated upon irradiation of buffered N₂O-saturated aqueous solutions containing 0.050 M NaNO₂ at pH 6.00, 7.40 and 9.00 (phosphate buffer, *I* = 0.20 M, room temperature (RT)). Radiolysis generates hydrated electrons (e_{aq}^{-}), 'OH and 'H [31–33] which oxidize NO₂⁻ to 'NO₂ in N₂O-saturated nitrite solutions [31–33]. The dose per pulse was determined with a thiocyanate (0.010 M) dosimeter, saturated with N₂O (0.026 M), taking *G*(SCN)⁺₂ = 6.13, where *G* is the number of molecules formed per 1.602 × 10⁻¹⁷ J of energy absorbed by the solution, and $\epsilon_{472 nm} = 7590 \pm 230 \text{ M}^{-1} \text{ cm}^{-1}$ [34].

Prior to irradiation, solid Cbl(II) was quickly added to the appropriate anaerobic buffer containing nitrite in the solution reservoir and the solution bubbled with argon for a further ~30 min. Then the solution was saturated with N₂O for 5–8 min prior to collecting data. Reported rate constants are the average values of at least three independent measurements at three different wavelengths. The data were collected and fitted using the Numerical Integration of Chemical Kinetics program in PRWIN (by H. Schwarz, BNL).

2.6. ⁶⁰Co γ -radiolysis

Steady-state ⁶⁰Co γ -radiolysis studies on the reaction between cob(II)alamin or nitrocobalamin with 'NO₂ were carried out at pH 7.40 (0.068 M KH₂PO₄, 0.050 M NaNO₂, I = 0.20, 50.00 ml) in a buffered solution saturated with N₂O gas for 10–15 min. Cbl(II) (~1.66 mg) solid was quickly added and the solution bubbled for a further ~2–3 min with N₂O. The solution was transferred to a N₂O-flushed quartz cuvette, capped and the cuvette repeatedly exposed to a continuous flux of 'NO₂ with a production rate of ~2.5 × 10⁻⁷ M 'NO₂/s. The UV–vis spectrum was subsequently recorded after each irradiation. A similar experiment was carried out replacing Cbl(II) with HOCbl·HCl (pH 7.40, 0.068 M KH₂PO₄, 0.050 M NaNO₂, I = 0.20, RT), which rapidly reacts with nitrite to form nitrocobalamin in the presence of nitrite. ⁶⁰Co γ -radiolysis studies were carried out under anaerobic conditions using N₂O-saturated solutions.

2.7. HPLC experiments

HPLC analyses were carried out using an Agilent 1100 series HPLC system equipped with a degasser, quaternary pump, autosampler, and a photodiode array detector (resolution of 2 nm), using an Alltech Alltima C₁₈ semipreparative column (5 μ m, 100 Å, 10 mm × 300 mm) thermostated to 25 °C. A mobile phase consisting of acetate buffer (1% v/v CH₃COOH, pH 3.5), **A**, and CH₃CN (1% v/v CH₃COOH), **B**, were used in the following method: 0–25 min isocratic elution of 85:15 **A:B**, 25–27 min 85:15 to 30:70 **A:B**, 27–34 min isocratic elution of 30:70 **A: B**, 34–36 min 30:70 to 85:15 **A:B**. All gradients were linear and a flow rate of 2 ml/min was used. Product peaks were monitored at 254 and 350 nm.

3. Results and discussion

3.1. Studies on the reaction of cob(II)alamin with 'NO2

The reaction between reduced vitamin B_{12} (cob(II)alamin (Cbl(II)) and 'NO₂ was studied using pulse radiolysis in N₂O-saturated nitrite

Fig. 2. Plot of change in absorbance at 355 nm versus time for the reaction of 'NO₂ (3.0×10^{-6} M) with excess Cbl(II) (7.0×10^{-5} M) at pH 7.40 (0.050 M NaNO₂, 0.068 M KH₂PO₄, RT, *I* = 0.20 M, N₂O-saturated buffer). The best fit of the data to a first-order rate equation is superimposed on the data, giving k_{obs} = (2.10 ± 0.19) $\times 10^4$ s⁻¹.

solutions. Radiolysis of water generates hydrated electrons (e_{aq}) , 'H and 'OH [31–33], the latter species oxidizing NO₂⁻ to 'NO₂ [31–33].

$$\mathbf{H}_{2}\mathbf{O} \quad \mathbf{O}\mathbf{H} + \mathbf{e}_{aq}^{-} + \mathbf{H}_{2}\mathbf{O}_{2} + \mathbf{H}^{+} + \mathbf{H} + \mathbf{H}_{2}$$
(1)

$$\mathbf{e}_{(\mathrm{aq})}^{-} + \mathbf{N}_{2}\mathbf{O} + \mathbf{H}_{2}\mathbf{O} \rightarrow \mathbf{N}_{2} + \mathbf{OH}^{-} + \mathbf{OH}$$
(2)

 $\dot{H} + N_2 O \rightarrow N_2 + \dot{O}H$ (3)

$$OH + NO_2 \rightarrow NO_2 + OH$$
(4)

Fig. 3. Plot of observed rate, k_{obs} , versus Cbl(II) concentration for the reaction between Cbl(II) ((0.7–3.4) × 10⁻⁵ M) and NO₂ ((0.3–5.8) × 10⁻⁶ M) at pH 7.40 (0.068 M KH₂PO₄, 0.050 M NaNO₂, l = 0.20 M, RT, N₂O-saturated buffer). Data have been fitted to a line passing through origin, giving $k_{app} = (3.5 \pm 0.3) \times 10^8$ M⁻¹ s⁻¹.

Fig. 4. (a) Plot of change in molar extinction coefficient versus wavelength for (black squares) the reaction of excess Cbl(II) $(5.0 \times 10^{-5} \text{ M})$ with 'NO₂ $((2.0-13.5) \times 10^{-6} \text{ M})$; produced by pulse radiolysis) at pH 7.40 (0.050 M NaNO₂, 0.068 M KH₂PO₄, RT, *I* = 0.20 M, N₂O-saturated buffer) and (red circles) an anaerobic solution of Cbl(II) $(5.8 \times 10^{-5} \text{ M})$ containing excess nitrite exposed to air, resulting in NO₂Cbl formation (pH 7.40, 0.050 M NaNO₂, 0.068 M KH₂PO₄, RT, *I* = 0.20 M). (b) UV-vis spectral change for the latter reaction. The arrows indicate the directions of absorbance changes.

In kinetic experiments the Cbl(II) concentration was kept at least 5 times higher than the 'NO₂ concentration throughout to achieve essentially pseudo-first order conditions. Fig. 2 gives a plot of absorbance at 355 nm versus time for the reaction between Cbl(II) $(7.0 \times 10^{-5} \text{ M})$ and 'NO₂ $(3.0 \times 10^{-6} \text{ M})$ at pH 7.40. The data fit well to a first-order rate equation, giving an observed rate, $k_{obs} = (2.10 \pm 0.19) \times 10^4 \text{ s}^{-1}$. The rate is essentially the same when data are collected at 405 nm ($k_{obs} = (2.00 \pm 0.18) \times 10^4 \text{ s}^{-1}$; Fig. S1, Supplemental information).

Rates for the reaction between Cbl(II) and 'NO₂ were determined at other Cbl(II) concentrations at pH 7.4; Fig. 3. The data fit well to a straight line passing through the origin, consistent with a single irreversible reaction. The linear relationship suggests that the reaction is first-order with respect to Cbl(II) and 'NO₂. From the slope, the second-order rate constant (k_{app}) of the reaction was (3.5 \pm 0.3) \times 10⁸ M⁻¹ s⁻¹.

The reaction was also studied at pH 9.00. The observed rate constant was determined at a range of Cbl(II) concentrations and the data are summarized in Fig. S2, Supplemental information. The reaction is once again irreversible, and, from the slope, the rate constant (k_{app}) of the

reaction was determined. This value is the same within experimental error as that obtained at pH 7.0 as expected, since there is no change in the ionization of the species in this pH range. It was not possible to determine k_{app} at values less than 7.0, since increasingly more HNO₂ is formed (pK_a(HNO₂/NO₂⁻) = 3.40 [12]). (H)NO₂ is required in the solution for 'NO₂ generation and others have shown that HNO₂ (not NO₂⁻) rapidly oxidizes Cbl(II) to aquacobalamin [35]. At pH 6.0 the half-life for oxidation of Cbl(II) by (H)NO₂ (0.05 M) is ~30 s (Fig. S3, Supplemental information; 0.134 M KH₂PO₄, 0.050 M NaNO₂, *I* = 0.20 M).

A previous experiment in our lab suggested that Cbl(II) ($\lambda_{max} = 312$, 405, and 475 nm) reacts rapidly with 'NO₂ to form the cob(III)alamin, nitrocobalamin (NO₂Cbl) [36]. It was not possible to obtain full spectra as function of time from our experimental setup for the pulse radiolysis experiments. In order to confirm that Cbl(II) is indeed converted to $\text{NO}_2\text{Cbl}~(\lambda_{max}=354,\,413,\,\text{and}~531$ nm at pH 7.40) by 'NO $_2$ [36,37], a plot of change in molar extinction coefficient versus wavelength for the reaction between Cbl(II) and 'NO₂ was generated and compared with the change in molar extinction coefficient for the conversion of Cbl(II) to NO₂Cbl, Fig. 4. The latter data was obtained by exposing an anaerobic solution of Cbl(II) in pH 7.40 buffer containing excess nitrite (0.050 M NaNO₂) to air, since Cbl(II) is oxidized by air to aquacobalamin/hydroxocobalamin, which reacts rapidly with nitrite to form nitrocobalamin [37]. There is excellent agreement between the two sets of data, with both having isosbestic points at 378 and 489 as expected for the conversion of Cbl(II) to NO₂Cbl [36]. A similar result was also obtained at pH 9.00 (Fig. S4, Supplemental information); hence under the pH conditions of our study 'NO₂ oxidizes Cbl(II) to NO₂Cbl.

The stoichiometry of the reaction between Cbl(II) and 'NO₂ was investigated using a ⁶⁰Co γ -source to generate 'NO₂. Cbl(II) (2.7×10^{-5} M) was repeatedly exposed to a continuous flux of 'NO₂ (2.5×10^{-7} M 'NO₂/s) for 32 s time intervals (0–2 mol equiv. 'NO₂ added in total) with UV–vis spectra recorded after each exposure, Fig. 5. Cbl(II) is cleanly oxidized to NO₂Cbl ($\lambda_{max} = 354$, 413 and 531 nm) with sharp isosbestic points observed at 334, 378, 489, and 570 nm in agreement with literature values for the Cbl(II)/NO₂Cbl conversion [36,37]. The inset to Fig. 5 gives a plot of absorbance at 312 nm versus mol equiv. of 'NO₂ added for the same data. The absorbance at 312 nm decreases linearly up to 1.0 mol equiv. 'NO₂ and is unchanged upon the addition of further

Fig. 5. UV–vis spectral change for the products of the reaction between cob(II)alamin $(2.7 \times 10^{-5} \text{ M})$ and 'NO₂ (0–2 mol equiv.) at pH 7.40 (0.068 M KH₂PO₄, 0.050 M NaNO₂, I = 0.20 M, N₂O saturated buffer). *Inset*: Plot of absorbance at 312 nm versus mol equiv. 'NO₂. The arrows indicate the directions of absorbance changes.

 $^{\circ}NO_2$. Therefore, the stoichiometry of the reaction between Cbl(II) and $^{\circ}NO_2$ at pH 7.40 is 1:1.

In order to probe whether 'NO₂ modifies the corrin ring of B₁₂, the product solution for the reaction between Cbl(II) and 2.0 mol equiv. 'NO₂ at pH 7.40 was analyzed by HPLC. A single corrinoid product was observed in the HPLC chromatogram eluting with the same retention time as authentic NO₂Cbl, Fig. S5, Supplemental information. Hence 'NO₂ reacts with Cbl(II) to form the cob(III)alamin complex nitrocobalamin, NO₂Cbl, Eq. (5).

$$Cbl(II) + NO_2 \rightarrow NO_2Cbl$$
 (5)

One-electron oxidation of the metal center by 'NO₂ to form the corresponding oxidized nitro complex has been reported previously for Fe(II) and Co(II) porphyrins exposed to 'NO₂ at low pressures [38]. Oxidation of the metal center has also been observed for the reactions of 'NO₂ with nitrosylhemoglobin (MbFe^{II}NO) and nitrosylhemoglobin (HbFe^{II}NO), with rate constants of $(2.9 \pm 0.3) \times 10^7$ M⁻¹ s⁻¹ and $(1.8 \pm 0.3) \times 10^7$ M⁻¹ s⁻¹, respectively, followed by dissociation of 'NO [39].

3.2. Studies on the reaction of nitrocobalamin with NO_2 : NO_2 does not react with the corrin ring of B_{12}

The reaction between nitrocobalamin (NO₂Cbl) and 'NO₂ was explored using the 60 Co γ source to generate 'NO₂ at pH 7.40. Nitrocobalamin is rapidly formed upon the addition of H₂OCbl⁺/HOCbl to a solution containing excess nitrite [37]. Cbl(II) $(2.1 \times 10^{-5} \text{ M})$ was repeatedly exposed to a continuous flux of NO₂ (2.5×10^{-7} M \cdot NO₂/s) for 32 s time intervals (0-2 mol equiv. NO₂ added in total) with UVvis spectra recorded after each exposure, Fig. S6 in the Supplemental information. No change in the UV-vis spectra was observed. Analyzing the product solution of the reaction between NO₂Cbl and 'NO₂ using HPLC, Fig. S7, Supplemental information, confirmed that no reaction occurs that is, 'NO2 does not modify the corrin macrocycle at the low concentrations of 'NO₂ produced in these experiments. Interesting, reacting 'NO₂ with Cbl(II) using Cu/HNO₃ to generate 'NO₂ resulted in a small HPLC peak in addition to NO₂Cbl which was attributed to a nitrocorrinoid(III) species arising from modification of the corrin ring by 'NO₂ [36]. It is possible that higher 'NO₂ concentrations were achieved in solution in the latter experiments, resulting in corrin ring modification by 'NO₂, although no experiments were carried out to probe this further. No reaction was observed between metmyoglobin (MbFe^{III}–OH₂) and [•]NO₂ [40]. Rate constants have also been reported for the reactions of 'NO₂ with oxymyoglobin (MbFe^{II}O₂; (4.5 \pm 0.3) \times 10⁷ M⁻¹ s⁻¹) and ferrylmyoglobin (MbFe^{IV} = 0; $(1.2 \pm 0.2) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$) at pH 7.4, with the reactions proceeding via MbFe^{III}O₂NO₂ and MbFe^{III}ONO₂ intermediates, respectively [40].

4. Conclusions

The second-order rate constant of the reaction between Cbl(II) and $^{1}NO_{2}$ to form nitrocobalamin has been directly determined using pulse radiolysis and was found to be $3.5 \times 10^{8} M^{-1} s^{-1}$ (pH 7.4 and 9.0). Measurements at lower pH values were not possible since HNO₂ oxidizes Cbl(II) to aquacobalamin. Nitrocobalamin formation was shown by both UV-vis spectroscopy and HPLC. No reaction was observed between nitrocobalamin and $^{1}NO_{2}$. Our results show that under physiological conditions although $^{1}NO_{2}$ will rapidly oxidize the metal center of Cbl(II), it is unlikely to modify the corrin macrocycle. Given that GSH is present at such high (mM) concentrations in cells and that the second-order rate constant for the reaction between glutathione and $^{1}NO_{2}$ is $^{-2} \times 10^{7}$ [9], GSH is likely to be a much more important intracelular scavenger of $^{1}NO_{2}$.

Acknowledgments

58

This research was funded by the US National Institute of General Medical Sciences of the National Institutes of Health under award number 1R15GM094707-01A1. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The work at Brookhaven National lab was carried out at the Accelerator Center for Energy Research, which is supported by the U.S. DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences under contract no. DE-AC02-98CH10886.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/i,jinorgbio.2014.09.014.

References

- [1] G. Ferrer-Sueta, R. Radi, ACS Chem. Biol. 4 (2009) 161-177.
- [2] G. Merényi, J. Lind, S. Goldstein, G. Czapski, J. Phys. Chem. A 32 (1999) 5685–5691.
- [3] O.V. Gerasimov, S.V. Lymar, Inorg. Chem. 38 (1999) 4317–4321.
- [4] O. Augusto, M.G. Bonini, A.M. Amanso, E. Linares, C.C. Santos, S.L. De Menezes, Free Radic. Biol. Med. 32 (2002) 841–859.
- [5] M.L. Brennan, W. Wu, X. Fu, Z. Shen, W. Song, H. Frost, C. Vadseth, L. Narine, E. Lenkiewicz, M.T. Borchers, A.J. Lusis, J.J. Lee, N.A. Lee, H.M. Abu-Soud, H. Ischiropoulos, S.L. Hazen, J. Biol. Chem. 277 (2002) 17415–17427.
- [6] J. Byun, D.M. Mueller, J.S. Fabjan, J.W. Heinecke, FEBS Lett. 455 (1999) 243–246.
- [7] J.B. Sampson, Y. Ye, H. Rosen, J.S. Beckman, Arch. Biochem. Biophys. 356 (1998) 207-213
- [8] W.K. Wilmarth, D.M. Stanbury, J.E. Byrd, H.N. Po, C.P. Chua, Coord. Chem. Rev. 51 (1983) 155–179.
- [9] E. Ford, M.N. Hughes, P. Wardman, Free Radic. Biol. Med. 32 (2002) 1314–1323.
- [10] R.E. Huie, Toxicology 89 (1994) 193–216.
- [11] W.A. Pryor, J.W. Lightsey, D.F. Church, J. Am. Chem. Soc. 104 (1982) 6685–6692.
- [12] B.A. Freeman, P.R.S. Baker, F.J. Schopfer, S.R. Woodcock, A. Napolitano, M. d'Ischia, J. Biol. Chem. 283 (2008) 15515–15519.

- [13] A. Joffe, S. Mock, B.H. Yun, A. Kolbanovskiy, N.E. Geacintov, V. Shafirovich, Chem. Res. Toxicol. 16 (2003) 966–973.
- [14] H. Ischiropoulos, Arch. Biochem. Biophys. 356 (1998) 1–11.
- M.F. McCarty, J. Barroso-Aranda, F. Contreras, Med. Hypotheses 73 (2009) 824–834.
 J.L. Gebicki, P. Meisner, K. Stawowska, L. Gebicka, Radiat. Phys. Chem. 81 (2012)
- [10] J.L. GEDICKI, P. MEISHEI, K. SLAWOWSKA, L. GEDICKA, KAUIAL PHYS. CHEIII, 81 (2012) 1881–1884.
- [17] L.K. Folkes, K.B. Patel, P. Wardman, M. Wrona, Arch. Biochem. Biophys. 484 (2009) 122–126.
- [18] R. Banerjee, Chemistry and Biochemistry of B₁₂, Wiley, New York, 1999. 1–300.
- [19] L. Randaccio, S. Geremia, N. Demitri, J. Wuerges, Molecules 15 (2010) 3228-3259.
- [20] R. Carmel, D.W. Jacobsen (Eds.), Homocysteine in Health and Disease, Cambridge University Press, Cambridge U.K., 2001, pp. 100–129.
- [21] F. O'Leary, S. Samman, Nutrients 2 (2010) 299-316.
- [22] Z. Li, C. Gherasim, N.A. Lesniak, R. Banerjee, J. Biol. Chem. 289 (2014) 16487–16497.
 [23] C.S. Birch, N.E. Brasch, A. McCaddon, J.H.H. Williams, Free Radic. Biol. Med. 47 (2009)
- 184–188.
- [24] E.S. Moreira, N.E. Brasch, J. Yun, Free Radic. Biol. Med. 51 (2011) 876–883.
 [25] E. Suarez-Moreira, I. Yun, C.S. Birch, I.H.H. Williams, A. McCaddon, N.E. Brasch, I. Am.
- [25] E. Suarez-Moreira, J. Yun, C.S. Birch, J.H.H. Williams, A. McCaddon, N.E. Chem. Soc. 131 (2009) 15078–15079.
- [26] C. Wheatley, Med. Hypotheses 67 (2006) 124–142.
- [27] C. Wheatley, J. Nutr. Environ. Med. 16 (2007) 181-211.
- [28] N.E. Brasch, R.G. Finke, J. Inorg. Biochem. 73 (1999) 215–219.
- [29] J.M. Pratt, Inorganic Chemistry of Vitamin B₁₂, Academic Press, London, New York, 1972. 100–104.
- [30] H.A. Barker, R.D. Smyth, H. Weissbach, J.I. Toohey, J.N. Ladd, B.E. Volcani, J. Biol. Chem. 235 (1960) 480–488.
- [31] P. Neta, R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 1027-1284.
- [32] H.A. Schwarz, A.O. Allen, J. Am. Chem. Soc. 77 (1955) 1324–1330.
- [33] G.V. Buxton, L. Clive, W. Greenstock, P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513–886.
- [34] D.E. Polyansky, D. Cabelli, J.T. Muckerman, T. Fukushima, K. Tanaka, E. Fujita, Inorg. Chem. 47 (2008) 3958–3968.
- [35] F. Roncaroli, T.E. Shubina, T. Clark, R. van Eldik, Inorg. Chem. 45 (2006) 7869–7876.
- [36] R. Mukherjee, N.E. Brasch, Chem. Eur. J. 17 (2011) 11805–11812.
- [37] E. Suarez-Moreira, L. Hannibal, C.A. Smith, R.A. Chavez, D.W. Jacobsen, N.E. Brasch, Dalton Trans. (2006) 5269–5277.
- [38] T.S. Kurtikyan, P.C. Ford, Angew. Chem. Int. Ed. 45 (2006) 492–496.
- [39] F. Boccini, A.S. Domazou, S. Herold, J. Phys. Chem. A 110 (2006) 3927–3932.
- [40] S. Goldstein, G. Merenyi, A. Samuni, J. Am. Chem. Soc. 126 (2004) 15694–15701.